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Abstract. New solutions to the Einstein-Cartan-Weyl system are presented and analysed 
in the intrinsic language of complex quaternionic exterior forms. The model is set up as 
a local gauge theory of the Lorentz group for critical sections of the linear frame bundle 
over space-time. Tentative suggestions are made for the interpretation of these solutions 
in the framework of a quantised interacting field system. 

1. Introduction 

Despite considerable effort there is no universally recognised quantum theory of 
matter coupled to gravity in physical space-time M. It is not even clear how to 
characterise the desirable properties of such a theory. One school of thought extends 
the existing notion of relativistic quantum field theory in Minkowski space to non- 
linearly coupled spin-two graviton fields and attempts to formulate questions in close 
analogy to those that arise in the absence of gravity. An alternative approach 
(Woodhouse 1977) seems to be more geometric in spirit and attempts to respect 
notions (such as coordinate independence) that play such a dominant role in the 
classical theory of relativity. However, to our knowledge such an approach has been 
restricted to the behaviour of matter in externally prescribed (suitably weak) gravita- 
tional fields. The reasons for such a limitation of course are not hard to see. On the 
one hand the conventional apparatus of flat space quantum field theory relies heavily 
on concepts (such as Fourier decompositions with respect to the eigenvalues of global 
translation operators) that are manifestly coordinate dependent. On the other hand 
the more sophisticated algebraic approaches appear to render all but the simplest 
coupled problems intractable. 

In these situations we feel that the attempt to understand the intricacies involved 
with quantum matter-gravity systems should be divided into two parts. There is the 
‘kinematic’ problem of establishing a space of states for observables over space-time 
which is to be distinguished from the dynamical problem of solving a set of coupled 
operator equations for the interacting degrees of freedom. If the second aspect of 
the problem is tackled it may be possible to introduce quantum operators and interpret 
them as they arise naturally in the solution. 

In this paper we investigate a coupling of the neutrino field to gravity. Since the 
neutrino is described in conventional quantum field theory by a fermionic field in a 
specific representation of the Lorentz group, we are confronted with the problem of 
making sense of the Einstein equation with a stress-energy tensor of essentially 
quantum mechanical origin. Our approach to this problem is as follows. In § 2 we 
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present a coordinate independent description of the neutrino field in Minkowski space. 
Since the neutrino action generates a stress form it is not a priori obvious that it does 
not generate a gravitational field and hence distort the metric. There have been claims 
(Davis and Ray 1974) that non-trivial neutrino field configurations exist with zero 
stress in particular vacuum fields. We point out later that the stress-energy of such 
‘ghost’ neutrino configurations is sensible in the context of the Einstein-Cartan 
approach. Having established conventions for the Minkowski space neutrino field we 
discuss in 0 3 how we plan to handle the gravitational degrees of freedom and their 
interactions with the neutrino. Motivated by some of the interpretational aspects of 
a possible quantum theory of gravity, we reject the metric tensor components in favour 
of sections of the linear frame bundle over space-time as being the more fundamental 
structures. Metric properties are then defined in terms of the Hodge map on an 
independent set of algebra valued coframes. For the purpose of generating dynamical 
fkkl equations in termmf e x t e r i i  
fields as mutually anticommuting (Grassmann valued) complex sections over M. (This 
approach incidentally ensures that neutrino mass terms can be incorporated into an 
action principle.) The stress form is derived from an action and its interpretation in 
arbitrary frames of a general space-time given. 

Throughout this section all field degrees of freedom are represented in terms of 
complex quaternionic valued forms (see appendix 1). This language has proved to be 
a particularly efficient way of incorporating local Lorentz covariance into the theory 
and is retained in the quantum interpretation of our solutions. At the semiclassical 
level, where the Fermi component fields are treated as all mutually anticommuting, 
the equations of motion are manipulated using the algebra of the exterior calculus of 
complex quaternionic forms. 

In 04 we make the hypothesis of regarding our exterior equations as ‘quantum 
algebra’ valued forms. We suggest that the final interpretation of such quantum 
operators will depend on which solution of the (nonlinear) equations is being discussed. 
It is clearly desirable to have an exact operator valued solution. The impetus for our 
whole approach consists of the rather remarkable properties of the solutions derived 
in this section and the fact that they are obtained without requiring a precise knowledge 
of the algebra of the quantum operators. 

For those who prefer an alternative spin formalism the relation to the Newman- 
Penrose spin coefficients is noted in appendix 2. 

2. The neutrino-antineutrino field 

In Lorentz curvature free space-time M we define the semiclassical neutrino field to 
be the spinor valued 0-form 5 in the ideal generated by w 1  and w 2 :  

5(x) = 51(x)w1 + 5 2 ( X ) W Z  (2.1) 

5-, 0 5  (2.2) 

(*P) A 0 5  = 0 

with the transformation induced by a change of orthonormal frame 

and satisfying the Weyl equation in an arbitrary frame of reference 

(2.3) 

where 0 5  = d e +  d dQ6. Since we may always choose a global Minkowski coordinate 
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system (t ,  XI, x', x3) in which the classical metric tensor takes the form 
3 

g = - d t @ d t +  1 d x k O d x k  
k = l  

we shall discuss solutions in this frame where the Weyl equation becomes 

(2.4) 

(*Z) hd[ = 0. (2.5) 
The conjugate Weyl spinor q -* Q*q under the same frame transformation obeys the 
conjugate equation 

(2.6) 
and may be termed the semiclassical 'antineutrino' field at this stage. Since these 
equations are linear in the spinor fields their Grassmann nature is not relevant for 
the free systems. It is convenient to change coordinates to 

(*e) A dq = 0 

= ( i ~ J ? ) ( t - ~ ~ ) ,  = (1/JZ)(t+X3), z = (1/Jz)(x '  +ix2), (2.7) 

so that 

g = -dv@du -du @dv +dz  @dz* +dz*@dz. (2.8) 

A particular solution to (2.5) parametrised by a discrete set of arbitrary real numbers 
{k} is 

[(U, v )  = (cj;" eikUw2+&" eikuw') (2.9) 
( k )  

where the amplitudes are labelled by a helicity eigenvalue E = sgn(k). For any solution 
[(x) = to eia(x) with to real we define the Minkowski orthonormal frame instantaneous 
energy and momentum by 

E = io da ,  

P, = -i, da,  1 = 1,2 ,3 ,  (2.10) 

and the helicity is then determined by eigenvalues of X?=1 ibA/lP: +P:+P: l .  Thus 
we interpret (2.9) as the field describing positive energy E = Ikl neutrinos of negative 
helicity propagating along the positive and negative z axis of an orthonormal frame 
together with negative energy E = -1kl neutrinos of positive helicity and similar 
propagation characteristics. Since the conjugate equation (2.6) admits the solution 

we make the identifications 

(2.11) 

(2.12) 

so that q * w 2 / & =  [ (post-multiplication by w 2  simply returns q* to the [ ideal). 

(where an under-bar denotes an element of a quantum algebra) 
We can now construct from these solutions a neutrino-antineutrino operator field 
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so that identifying the positive energy particle and antiparticle vacua by 10) 

(2.14) 

A conventional Fock-space picture is constructed by regarding the starred amplitudes 
as creation operators for positive energy antineutrinos of positive helicity in the global 
Minkowski orthonormal frame. The conjugate operator will now annihilate and create 
quanta of opposite type in the same frame: 

Such decompositions of neutrino-antineutrino plane waves are all that is necessary 
for our discussion of gravitational interactions. This is because one cannot in general 
simply superpose interacting solutions propagating in different directions. However, 
we note that to obtain a solution [Q to (2.3) in an arbitrary Lorentz frame, we simply 
apply the appropriate unit norm quaternion Q(a,P) to any solution 5 of (2.5) to 
generate 

5 + 5 ~ = Q Q ( a , P ) 5 .  (2.16) 

The scalar phase can be re-expressed in terms of coordinates appropriate to the new 
frame. 

The curvature free neutrino equation can be readily generated from the semi- 
classical action 4-form on M 

A, = Im S[2i(*Z) ~ d 5  A 5'1 (2.17) 

where 5 is here regarded as a Grassmann valued O-form in the (w', w2) ideal. Such 
an action is invariant under active global Lorentz transformation as well as being 
manifestly coordinate independent. 

3. Coupling to gravity 

The gravitational field is regarded as a dynamical system in its own right. However, 
classical gravity has been intimately related to the classical geometric description of 
a manifold that is conventionally identified with space-time. The observable properties 
of classical events are supposed to be modified by the metric and curvature properties 
that are endowed upon this manifold by chssicd gravity. Iii what fsUows weregard 
the existence of the space-time manifold largely as a matter of mathematical con- 
venience. The hypothesis that physical events can be continuously distributed in a 
four-dimensional manifold enables the laws of physics to be formulated in terms of 
differentiable structures and ultimately differential equations. Such a hypothesis is 
completely independent of the geometrical properties of the manifold. Although an 
ultimate description can be envisaged in which the manifold is replaced by a skeletal 
structure of ordered simplices, it is not a priori clear that the discrete mathematics 
involved would be able to answer questions posed by essentially classical observers 
without passing to the continuum manifold limit. 

Our philosophy here is to regard the space-time manifold locally as a convenient 
image of compatible R4 charts in which the differentiable laws of quantum field theory 
can be coordinated. (We will have little comment on the global properties, and 
integration is understood over well defined chain maps.) Since observers are particular 



Analysis of neutrino couplings to gravity 1629 

events themselves they will also be coordinated within the same smooth atlas. Matter 
fields and their interaction will be described in terms of structures over the space-time 
manifold and the results of measurements are conceived as being coded into local 
state spaces which we imagine as a fibred structure over the manifold. A proper 
quantum formalism will give a prescription for constructing such state spaces along 
with an algebra of dynamical variables representing observables. At the classical level 
the cotangent bundle of first-order jets to sections of classical field components provides 
a state space (with symplectic structure). The real valued functions in this space can 
be endowed with the structure of an associative algebra as well as the Lie algebra 
structure defined by the Poisson brackets. The appropriate generalisation for discuss- 
ing quantum gravity is yet to be established. However, in the classical case the 
geometry of the space-time manifold is defined in terms of the metric and various 
connections of principal fibre bundles (Trautman 1980, Benn et a1 1980). The classical 
theory of gravity is ultimately related to a connection in the bundle of orthonormal 
frames. The frames are orthonormalised with respect to a metric of Lorentzian 
signature which is invariant under SO(3, 1). Matter fields are taken as sections of 
bundles associated with an SL(2, C) x G bundle where G is an appropriate gauge 
group for all the matter. Gravity and non-Abelian gauge forces arise classically as a 
consequence of the non-triviality of the principal SL(2, C) x G bundle over M. The 
classical interpretation of gravity may be traced to the operational significance 
attributed to the metric and connection. Parametrised paths C,,,: R +M, [01]+ [x”(T)]  

with tangent vector C(l,.alar E T,(M)  are assigned a Lorentz length 

lo’ lg(C, 1 ) .a/dT, C(I ).a/aT)11/2 d7 

independent of the parameter 7. Vector fields X on M are declared parallel along 
C(I) if VC,,~*, , ,~~X = 0 where V is the connection. Such parametrised curves always 
exist on the manifold mathematically although they may not be defined physically. 
Thus if g is to become an algebra valued quantum tensor it must lose its classical 
interpretation in terms of defining the lengths of parametrised curves since the latter 
are unobservable. At the operational level, the ‘lengths’ of congruences of curves 
that approximate the world tube of clocks are best defined in terms of a physical 
device for establishing a parametrisation. They are consequently conventional proper- 
ties although it may turn out that many natural clocks assign similar parametrisations. 
We recall however that the classical metric can be used to define a correspondence 
between classical forms and their duals. If we extend the definition of the linear 
Hodge map * (Choquet-Bruhat et a1 1977, Dodson 1980) on the classical g- 
orthonormal forms that span A*(M) to arbitrary algebra valued forms (including 
*(er A e r )  = -*(_sr A c l ) ) ,  we could dispense with g altogether and use this map in its 
place. We suggest that for a quantum algebra valued p-form g generalised metric 
properties enter in the expression for its integral over a local 4 - p  chain C(,-,) when 
it is computed with the aid of the generalised Hodge dual (appendix 1): 

(3.1) 

What such an operator itself measures will of course depend on the interpretation of 
g and C(,-,,. A manifold will be declared orientable if such rules are consistent 
globally. On a non-orientable manifold we can still operate with ‘twisted forms’ that 
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compensate for the necessary coordinate transformations possessing a negative 
Jacobian. Thus with the use of * and algebra valued forms we can eschew the 
construction of an explicit metric. The fundamental light cone structure is still 
incorporated into the theory via *. With a conventional choice of *1, a p-form g(,) 
is locally space like, time like (or null) according to the sign of *1 in eigenvalues of 
gc,, A *a(,,. When the Lorentz curvature of M vanishes we expect the coframes to 
return to C number valued forms. Then the conventional metric may be reconstructed 
and distinct events in M classified according to whether they can be joined by time-like, 
space-like or null geodesics of g. 

In an analogous manner we decouple the classical interpretation of the classical 
SL(2, C )  Lorentz connection w in the bundle of orthonormal frames from its 
significance as a quantum form. The theory will relate w to _e and the matter fields. 
Whether it has an independent physical interpretation (e.g. in terms of propagating 
gauge particle quanta) depends on the structure of the theory and its quantum solutions. 

With these tentative suggestions for interpreting what follows in terms of algebra 
valued forms, we proceed to describe a model for the coupling of neutrinos to gravity. 
We first derive a set of coupled exterior equations from an action principle in terms 
of semiclassical Grassmann neutrinos. We then reinterpret these as operator equations 
for algebra valued forms and seek exact solutions. The solutions are then examined 
to see if they constitute a sensible quantum model for the nonlinear operator equations. 

The classical Einstein theory of gravity in matter free space-time M can be 
generated from the action 4-form AGc T * ( M ) :  

AG(e, U )  = Im S(2kR A e A e*).  (3.2) 

This is extrema1 if 

2X(R A e )  = 0, T = 0, (3.3) 

and since DT = 2 d ( R  A e )  the free space Einstein equations are simply 

R r \ e = O  (3.4) 

with zero torsion. A natural theory of gravitationally interacting neutrinos can be 
generated from the locally SL(2, C )  invariant semiclassical action 

A(e, w, 5) = Im S[2kR A e A e* + 2i(*F) A D t  A 5'3 (3.5) 

where D t = d & + w  A t  in terms of the SL(2, C )  connection 1-form w E T * ( M ) .  At 
this point it is to be stressed that the connection is not assumed to be torsion free 
and hence expressible solely in terms of metric variables. (It is of course a metric 
connection since SL(2, C )  covers the invariance group S O ( 3 , l )  that keeps the frames 
orthogonal under transport.) This appears to be the fundamental difference between 
our approach to gravitating neutrinos and other accounts that have appeared before 
in the literature (Kuchowicz 1975). 

At first sight the Cartan approach reveals nonlinear neutrino self-interactions, 
although we shall indicate that such nonlinearities in fact simplify in  the coupled 
system of field equations. Contrary to popular belief, the presence of torsion does 
not always produce complications and its exclusion from the outset in any theory of 
gravity seems an entirely ad  hoc and unnatural restriction in the presence of spinor 
fields. 



Analysis of neutrino couplings to gravity 1631 

Making variations in [ and taking into account their anticommuting nature, the 

(3.6) 

neutrino field equations are 

(*E)  A D[-$(D*E)  A 5 = o 
where the following identity has been used: 

S(*E A DSt A 6') = S[D*E A 8&'- ( * E )  A S [D[ ' ] -dS(*E A dff'). (3.7) 

From the definition of torsion it appears that the Weyl equation has acquired an 
explicit coupling to the torsion field. We demonstrate however that this is not the 
case. Making variations on w yields 

Im S{Sw[2kD(e  ~e*)-2i[f'*Z]}=O (3.8) 

or, since w is a complex q-vector valued l-form, 

V [ ( 2 k T  -&'Z A e )  A Z ]  = 0 .  (3.9) 

This is an algebraic equation for the torsion form T with a unique solution in terms 

(3.10) 

of h 3 -&ti: 
2kT = 2d(hE A e )  - e  A 6e.  

Since * E  = -:E A e A E this implies 

D*P = -ki(F A e A E - E A  T A  Z + E A  e A 7) = (i/l2k)Z A e 6 A  e A P =  0. (3.11) 

Thus the neutrino generated torsion implies that the field equation (3.6) becomes 
simply 

* E A D [ = O  (3.12) 

and the torsion effects couple only through the connection. Finally, varying e, we 
generate the Einstein-Cartan equation for the orthonormal frame in terms of an 
arbitrary linear coordinate frame: 

(3.13) 2%[R A e + ( 1 / 1 2 k ) ( D f ~  f ' ~  E A e + e  A e? h D f [ + + e  A D [ [  A e ) ]  = 0. 

Equations (3.10), (3.12), (3.13) constitute the fundamental equations for the coupled 
system of gravitationally interacting neutrinos. 

In order to interpret physically the results of the analysis below, it is worth pointing 
out the physical significance of some of the classical forms that enter into these 
equations. Given any action 4-form of matter and gravity on M 

(3.14) 

where cAM,G involves matter and gravitational degrees of freedom, we define the four 
real Einsteinian stress 3-forms T~ by 

t 

A = 21m S ( k R  A e A e*+CAM,G) 

3 

a = O  
c8, AM,G = 1 ma A Se" (3.15) 

in terms of independent orthonormal frame variations. These four stress forms can 
be used to construct a Hermitian stress r, 

3 
7 = 70+ irk;,, 

k = l  
(3.16) 
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so that the Einstein-Cartan equations read 

2X(R A e)  = ( c /2k )~ .  (3.17) 

In the presence of torsion the stress forms T" are more fundamental than the conven- 
tionally constructed tensor with components *Ta(db) = Tab where e"(&) = 6"b. Writing 
the 4 variation equation as 

D(e A E) = 9, (3.18) 

in terms of a locally defined complex q-vector valued 3-form 9 = X: = I y k t ? k  associated 
with AM.G, we see that in terms of the anti-Hermitian torsion 2-form T 

9= 2 V ( T  A e ) .  (3.19) 

Its 24 real components are associated with locally defined spin densities of AM.G.  

Applying D to this equation yields 

D 9 =  2 V ( D T  A E )  (3.20) 

since V(T A F )  = 0. However, DT = 2 d ( R  A e)  (second Bianchi) and since 
V[2d(R A e )  A E] = V[2X(R A e )  A E], then for configurations obeying (3.17) we have 

D 9 =  (c/k)V(T A 2). (3.21) 

By isolating d 9  from D 9  this local equation may be used to interpret the flux of 9 
out of a 3-chain on M in terms of the field torque-forms T A E. Applying D to (3.17) 
gives 

(3.22) 

since DR = 0 (first Bianchi). If the spin density from 9 is re-expressed (uniquely) in 
terms of a complex q-vector l-form 6 by the definition 

(3.23) 

DT = 2X(R A T) 

9 = 2 v ( 6  A e A E ) ,  

one can explicitly express the torsion in terms of 6 as 

T = 2 d ( 6  A e). (3.24) 

Thus the local statement (3.22) is expressible in terms of the spin densities as 

DT = 4X[R A d(6 A e ) ] .  (3.25) 

To interpret these stress forms classically one may decompose them into a 3 + 1 form 
structure defined by observer curves in M. Since our formulation is entirely coordinate 
free and frame covariant, we can always choose a local frame e o = d r  which is dual 
to the tangent vector of a time-like observer. Let M3 be the space-like submanifold 
with respect to g in which any tangent vector of the corresponding orthogonal 3-frame 
lies. If we identify the components of T according to such a decomposition by 

0 
T = j A d t + p ,  

k = 1,2 ,3 ,  T k = p k A d t + G k ,  
(3.26) 

(3.27) 

then j is the local energy current density 2-form on M3 with p the associated energy 
density 3-form. p k  is the (Maxwell) stress 2-form on M3 in terms of which the 
orthonormal k-component 'force' F k  per unit area bounding a volume 3-chain c(3) is 
defined by j,,,, d p  '. For non-equilibrium configurations Gk measures the correspond- 
ing 3-momentum density 3-form on M3.  In general, if any observer on M has a local 



Analysis of neutrino couplings to gravity 1633 

frame of vectors (Xo,  X k ) ,  k = 1,2 ,  3, the measured components are defined by 

[k = * T o ( x k ) ,  p' = *T0(X0), 

r ; :  = *Tk(X/ ) ,  Gk = *Tk(X0). (3.28) 

We have introduced these notions explicitly since the usual interpretation of 
stress-energy measured by moving observers seems restricted to symmetrical second- 
rank tensors (Wainwright 197 1). Such definitions are inadequate for situations where 
the Einstein tensor and hence the associated stress sources generate non-symmetric 
tensors. 

4. Solutions and discussion 

In this section we present the method for solving the fundamental field equations 
(equations (3.10), (3.12), (3.13)) which are now regarded as suitably ordered exterior 
equations for operator valued forms: 

(4.1) 

(4.2) 

(4.3) 

2T  = 2 d ( &  A g) - $6 A e, 
*e A 0 5  - = 0,  

7 2 ~ [ R ~ e + ~ ( D 5 5 ~ A g h _ e + _ e ~ ~ ~ D S r ' + _ e ~ D 5 5  -- -- -- A C ) ] = o ,  

where we set k = 1 for convenience. The operator valued null basis is defined by 

I = ( 1 / f i ) ( _ e 3  +_eo), (4.4) 

n = ( 1 / f i ) ( g 0 - g 3 ) ,  (4.5) 

m = ( l / f i ) ( g '  +i_e2), (4.6) 

so that in a spinor basis we may write 

g = ilw' +inu'  -imu2 +im* w2. (4.7) 

(For typographical clarity we will henceforth omit the under bar from all basis forms.) 
If the basis is regarded as a c-number the classical metric tensor would be 

g =-IO x n - n @ i + m @ m * + m * @ m .  (4.8) 

A Minkowski space is defined by the existence of a global chart in which coordinates 
(U, v, z ,  z* )  enable one to define global holonomic null forms 

I = du, n =dv, m =dz. (4.9) 

Since the coordinates define real functions of the events on M these Minkowski 
coframes define elements in the centre of the algebra. In this sense Minkowski space 
provides a c -number background in terms of convenient real coordinates. We proceed 
to examine solutions to (4.1)-(4.3) in terms of certain excitations @(U, z ,  z * )  of the 
Minkowski forms which locally behave as 

1 =du, n = dv - N ( u ,  z ,  z* )  du, m =dz,  (4.10) 

in the same null coordinates. In the absence of matter it is known that this ansatz 
solves the vacuum Einstein equations exactly and generates the so-called plane wave 
metric. In the presence of the neutrino-antineutrino field we adopt the simple 
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progressive wave 

C f ( U )  = f ( u ) @ , w 2  (4.11) 

where f is a complex function and 4, an element in the operator algebra. From (4.1) 
the torsion 2-form is calculated to be 

(4.12) 

where q,(u)ul  =ef(; zz -6h(u). The connection l-form follows from this by solving 
the structure equa6on ((A1.15)): 

T = i q f ( u ) ( m  A m * u l  + I A m * w 2  + I A mu2)  

(4.13) 

where Hz = aH/az. The curvature 2-form follows immediately (equation (A1.16)) as 

where q; = dqf/au. In  these and subsequent formulae we have deliberately separated 
out explicit contributions from the matter fields. If we write 

3 = & + K  (4.15) 

in terms of the pure Christoffel connection &with 

K = 8 y+t3 + (i/4 JZ) y fm  * w 

then from the structure of 6, we observe 

(4.16) 

B c  A Tf = 0 ,  (4.17) 

(4.18) 

(4.19) 

since 6, depends only on U and 
1 2 * Z = m  A m*A 1u'-m A m*Anw - 1  An A mu - 1 ~  n Am*w2. (4.20) 

Thus we have a solution to the field equation (4.2) for arbitrary f ( u )  and H(u, z ,  z * )  
in the presence of torsion. From (4.14) and (4.7) we compute 

(4.21) 

The Einstein 3-form is the Hermitian part of this and simply excludes the second 
term. With the aid of the Weyl equation (4.2) we can express the matter stress 3-forms 
as 

2R = -2iHzz*1 A m A m * u 1 + ( t y ; - 2 q : ) 1  A m A m*u I . 

T, = Im S[2i2 A (iuDT)(t] 

which yields 

(4.22) 

where we have written f ( u )  = / f (u) /e- iu(U'  in terms of a real phase a. Thus equation 
(4.3) is obeyed if 

(4.23) 

T = - (a 'qf-s iqf) l  1 2  Am A m  * 1  U 

Hzz*(u, 2, z * )  = 3a'(u)yr(u)  
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which correlates the gravitational and matter excitations. ‘The gcneral solution of this 
simple equation is 

H ( z ,  2, z*)=@O)(u, 2, z*)+;zz*a’(U)yr (4.24) 

where H o  is harmonic, 

(U, 2, z*) = 0, (4.25) 

with arbitrary U dependence and describes a purely gravitational excitation. fZ  includes 
excitations from the fermionic field. Thus we have a complete solution to the interact- 
ing field system in terms of the arbitrary complex function f(u) and the harmonic 
component ~ ‘ ( u ,  z,  z*). 

Before discussing the operational significance of this solution we note how it 
generalises certain c-number solutions that have been discovered by other authors 
using c-number neutrino fields. A precise comparison is difficult, since other papers 
either allude very briefly to the nature of the theory being studied or work entirely 
within the framework of a Christoffel connection. The paper by Audretsch (1976) 
presents a torsion free Einstein-Weyl solution which corresponds to taking H,,* = 0 
above and setting f ( u )  =eu  with a’ = 0. The paper by Letelier (1975) claims to have 
an Einstein-Cartan-Weyl solution with torsion in Minkowski space corresponding to 
H = 0 ,  a’=O and constant f above. However this paper does not make clear the 
precise nature of the neutrino-gravity coupling. In these and other papers considerable 
emphasis has been placed on certain ‘ghost’ neutrino configurations. These are defined 
as non-trivial neutrino solutions with a vanishing ‘stress-energy tensor’. Their 
influence on the Einstein tensor is then regarded as no different from zero neutrino 
fields. This has been interpreted to mean that the neutrinos can propagate in certain 
vacuum Einstein metrics without disturbing them. Of course there are other neutrino 
field configurations that do disturb the classical metric (away from vacuum plane- 
symmetric ones for example), but these are not identified with the mysterious ‘ghost’ 
neutrino configurations. The properties of the latter are really only surprising if one 
takes the restricted viewpoint of neglecting to formulate the theory in terms of an 
independent connection and coframe set. We recall from equation (3.15) that the 
natural stress form T differs from the conventional stress form that is often equated 
to the Einstein tensor associated with the Christoffel connection alone. For an 
interacting system in Einstein-Cartan theory the definition of energy is blurred by 
the presence of matter degrees of freedom in the SL(2, C) connection. 

Using equation (4.15) to define w,, one can always write in a particular gauge 

where R = R, + Z and R, dw, + w, A w, contains purely metrical concepts. Similarly 
T can be split as 7, + t where T,  employs w, in covariant derivatives. Now our solution 
above generates ‘ghost configurations’ if a’ = 0 since in that case T,  = 0. The full stress 
tensor T as generated from the action principle by frame variations is however not 
zero in this case. Nevertheless, it is a remarkable feature of the a’ = 0 configurations 
that 7 - 2X(Z A e) is zero and one is left with the pure vacuum Einstein-Christoffel 
equations (and the interacting Weyl equation) to solve for the metric: 

2%’(R, A e )  = 0. 
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However, even in this situation, although the neutrino decouples its influence from 
the metrical properties of the manifold, it is not true to say that it does not influence 
the geometry of space-time. From equation (4.13) it will be observed that it enters 
into the solution for the SL(2, C )  connection. This connection is required to specify 
completely the classical geometry since it determines the fundamental notion of frame 
transport as discussed in 0 3. The Einstein-Cartan-Weyl system is perhaps the simplest 
example where the necessity of treating gravity in terms of an SL(2, C) gauge connec- 
tion is most manifest. Within this framework the interpretation of the a' = 0 configur- 
ation as 'ghosts' seems entirely redundant. 

When a' # 0 then neither T~ nor 7 vanishes and we have the general solution (4.24) 
above. From our discussion it should be apparent that considerable care is required 
to ensure that a c-number definition adopted for the concept of energy be a meaningful 
one. In the presence of nonlinear Fermi field interactions with gravity, the most 
natural thing to do is to associate classical stress concepts with 7 itself. Such a definition 
has the virtue of being Lorentz gauge covariant and hence transferable from one 
observer frame to another. 

To interpret our solutions (4.24), (4.25) operationally requires that a space of 
states be established together with a definition of relative probabilities for measuring 
different field configurations. It is natural to seek a local particle interpretation for 
the neutrino-antineutrino field, and although individual gravitational quanta have yet 
to be discovered it is tempting to regard the plane-wave solutions U"' in terms of 
graviton quanta. Our solutions are given in terms of a local orthonormal frame defined 
relative to a specific local chart of coordinates (U, U ,  x',  x2) E R4. These coordinates 
have an operational significance in the absence of H'"' in terms of the classical 
Minkowski metric (4.8) and macroscopic measuring devices. If non-rotating particle 
detectors in such a global Minkowski frame measure a neutrino-antineutrino graviton 
vacuum, we propose that for such a detector the solutions of (4.25) be quantised 
in terms of Bose-Einstein oscillator variables, while for plane wave solutions f ( v )  
(equation (2.15)), TIf be regarded as a suitably normalised number operator for 
the neutrino-antineutrino field acting in a Fock space constructed with fermion 
variables (2.14). From (4.24) we now declare that the orthonormal frames g 
themselves are excited by the presence of such quanta. Using the ideas discussed in 
§ 3, we interpret this to mean that the local light cone structure is dependent on the 
state of neutrino-antineutrino graviton matter. This may have a profound effect on 
the measurement of Fock space observables. Even within the fixed frame section in 
which the Fock space is being constructed here, sensible particle vacua must be 
established consistently with the local light cone structure determined by U in (4.24). 
For example, with U''' = 0 a positive energy neutrino solution with phase a = ku is 
consistent with a well defined light cone structure. Positive energy Fock-space states 
for the multi-particle neutrino configuration can then be built in the conventional 
manner (Cook 1953). However, if graviton quanta are excited with amplitudes 
satisfying (4.25), the neighbouring orthonormal frames may Lorentz rotate relative 
to each other. With intense gravitational excitations the local light cones may make 
v appear a space-like coordinate and hence destroy the particle interpretation of the 
neutrino wave in terms of null quanta. In such a situation the particle interpretation 
based on the original Fock space with weak graviton perturbations breaks down. This 
implies that a better Fock space interpretation be anchored to a quasi-classical time-like 
observer. Observables could then be established over a suitably prepared space-like 
hypersurface for each instantaneous local observer. The properties of his measuring 
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devices should be such as to follow the local light cone structure as the gravitational 
quanta build up. Clearly different observers will carry different Fock spaces, each 
defined relative to their own orthonormal frames. However, once the dynamics is 
presented in one frame it may be transformed to another frame at the same point by 
a local Lorentz transformation. Since the whole theory is set up to be gauge covariant 
under such transformations, it is possible to induce transformations between different 
Fock spaces. 

It is not appropriate to proceed further with the explicit construction of state 
spaces. There are a number of important problems that remain to be understood. A 
complete quantum description of our system cannot be given solely in terms of the 
solutions under discussion. There is probably another exact solution for neutrinos 
coupled to a plane-symmetric metric with non-zero torsion. (This comment is based 
on the structural similarity of our model with analogous solutions found in supergravity 
(Dereli and Tucker 1980).) It is important to understand how such distinct solutions 
can be woven into a coherent framework of non-perturbative quantum field theory. 

As a theoretical model the Einstein-Cartan-Weyl system yields a number of 
satisfactory results. It provides a class of exact solutions that considerably generalise 
those that have appeared before. Within this context certain 'ghost' configurations 
are shown to affect the geometry of space-time by modifying the linear connection 
in the orthonormal frame bundle. Using an intrinsic approach, we have tentatively 
argued that a quantum interpretation of these exact solutions may be consistent, 
provided one recognises that gravitational interactions have important implications 
for the process and interpretation of measurement itself. 
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Appendix 1. Complex quaternionic forms 

A complex differential p-form A takes values in the algebra generated by the elements 
iEC,ikkEWwhere (P) 

It may be written 

( A l . l )  

(A1.2) 

in terms of complex p-forms A,. 

(U', w 2 )  and (w', U') where 

( P )  
Weyl spinors may be represented in ideals generated by (U', U'), (w', w 2 )  or 
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The conventional component transformation generated by the matrix A E SL(2, C ) ,  

4 r  --* Ardn (A1.5) 

a' +(A-lT),as, p'+ (A-lT)*,p', (A1.6) 

can be induced by the unit norm complex quaternion Q (Qb = bQ = 1) according to 

4 4 1 U + 42u2 + Q4, (A1.7) 

(A1.8) a = a  w + a  w +Qa,  

4 ( I 1  w 1  + (12w2+ Q*& (A1.9) 

@ = P 1 u 1 + P 2 u 2 + Q * @ .  (A1.lO) 

Quaternion conjugation (& + - Zk) is denoted by an overbar and commutes with 
complex conjugation denoted by a superscript *. Their composition is denoted by t. 
In terms of these operators the following operators are defined acting on arbitrary 
complex quaternions q : 

(I i --* A * rsJ/ i 3 

1 1  2 2  

2Re(q) = q +q*, 2Im(q) = q -q*, 2S(q) = q + $9 

2V(q)  = q -$, 2,3m) = q + q + ,  2 4 q )  = q - q + .  (Al.11) 

If V(q) = 0 (S(q) = 0) q is termed a q-scalar (q-vector). It is Hermitian (anti-Hermitian) 
if q i =  + (-)q. The metric of space-time ds2  = R e ( e O f )  is expressed in terms of the 
anti-Hermitian 1 -form: 

7 
k e = ieO+ 1 e tk = -ei 

k = l  

where the familiar vierbein components eap relate orthonormal frames to linear 
coordinate frames; i.e. in a local coordinate {x"} system for space-time M 

e" = euI, dx". 

Under SL(2, C) the coframes transform according to 

e --* QeQ'. 

The connection, torsion and curvature forms on M are defined as follows: 
7 

4 = 1 wkt?k, 
k = l  

3 
T = De = de f 4 A e + e A w ' = i T" i 1 Tkt?k, 

k = l  

7 

R = D & = d w + d A ; =  c Rkt?k, 
k = l  

where d is the exterior differential operator on forms. 

( A l .  12) 

(A1.13) 

(A1.14) 

( A l .  15) 

(A1.16) 

Since T is anti-Hermitian, T o  and T k  are real 2-forms on M. Since G and R are 
SL(2, C )  valued, w k  and R k  are complex forms. For any complex q-vector valued 
p-form 

7 a = Ake^k, (A1.17) 
k = l  
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the complex components A k  are related to the usual real SO(3, 1) algebra components 
AQb = -Aha by the identification 

A k  =$(iAko- A"), k, I ,  m = 1,2 ,  3 cyclic. (A1.18) 

An orientation E = *1 of space-time is defined by choosing a tetrad with volume 
element 

(A1.19) *I  = c e " ~  e '  A e' A e 3  =i(&/24)e A E A e A E. 

Further details of the quaternionic formalism may be found in Tucker (1980). The 
calculation of $ 4 has been carried out with E = -1. The calculation for E = +1 is 
consistent if one changes the relative sign between the Einstein and Weyl contributions 
to the total action, In terms of the volume element, the Hodge dual on any p-form 
a is defined to be the linear map obeying 
( D )  

in terms of the metric for p-forms induced by g. If it is desired to construct the theory 
without introducing g explicitly, algebra valued basis forms are defined to be those 
forms related by a linear map * in the following manner: 

i ,  j ,  k = 1,2 ,  3 cyclic, ** a = -&(--1ya. (A1.21) * ( e O A e ' ) = E e ' A e  k , 
6 P )  

For real valued forms this is the Hodge map *: A P ( M )  + A4-P(M). 
For any vector field X on M the interior operator ix is defined by 

(iXg)(Yl, . . . , Yp-d =p(?,(X, Y1,. . . , YP-d (A1.22) 

for arbitrary vectors Y, and is a graded derivation on p-forms 

i x (  Q A p )  = (iN) A p (-1)"a A ixp. (A 1.23) 

If x k  is dual to e k  (&(e') = 8 ' k )  the orthogonal interior operators are written simply 
i, = ixa (a = 0, 1 ,2 ,3)  and may be used to construct an anti-Hermitian interior operator 

(PI 

(A1.24) 

The Weyl equation (3.12) becomes 

LxDg = 0 (A1.25) 

in terms of this derivation, where D g = d e + &  A 5. In terms of the null coordinates 
of $ 4  the Weyl equation in the presence of the plane gravitational wave (4.10) may 
be decomposed using 
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Appendix 2. Relation to Newman-Penrose formalism 

In terms of the null tetrad l-forms I ,  n, m (4.4)-(4.6) the anti-Hermitian coframe is 
re-expressed as 

3 

k = l  
e = i e o +  1 ekEk =i iw'+inu ' - imu2+im*w2 (A2.1) 

From the definitions 

i 1 i I 
T = -( T3 + T")w' - -( T3 - To)ul  - - (T' + iT2)u2 + -( T' - iT2) w 2 ,  (A2.3) Jz Jz Jz Jz 
and the structure equation 

T = de +6 A e + e  A 6'. (A2.4) 

it is found that 

dl  = - i ( 0 3  - w * ~ )  A 1 + i(w*' - iw*') A m -i(w' +iw2) A m* + (1/&)(T3 + To), 
(A2.5) 

(A2.6) 

(A2.7) 

dn = i (0 '  - w * ~ )  A n -i(w 1 2  -iw ) A  m + i ( w * 1 + i w * 2 )  A m* - (1/&)(T3- To), 

dm = i(o*' +iw**) A f - i (w'  +iw2) A n -i(w3 + w * ~ )  A m + (l/&)( TI + iT2). 

Defining the Newman-Penrose spin connection coefficients (Cohen and Kegeles 1974, 
Newman and Penrose 1962) by 

w 3  = -i(yI+En - a m  -pm*),  

w + iw2 = i(rf + Kn - pm - um *), 

w 1  - iw2 = -i(vl + r n  -Am -pm*),  

and substituting above, yields 

dl - (1/&)(T3+ To) = ( E  + e * ) /  A n - ( p  - p * ) m  A m * +  (a +@* - r*)m A 1 

+(a*+@ - r ) m *  A I - K*m A n - K m *  A n, 

dn +(I/&)( T3 - To) = (y  + y*)I A n - ( p  -p*)m A m* - (a +@* - r ) m  A n 

-(a* + p  - r * ) m *  An + u A I +  v*m* A I ,  

dm -(1/&)(T1+iT2) = ( T +  r * ) l  A n +(a* -@)m A m* + ( p * +  Y - Y*)m A 1 

+A*m* A I - ( p  - -E + E*)m A n - u m *  A n. (A2.13) 

For the neutrino spinor valued O-form 6 = w ' + t2 w 2  the Weyl equation 

(A2.8) 

(A2.9) 

(A2.10) 

(A2.11) 

(A2.12) 

* a  A (d6 + 66) = 0 (A2.14) 
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may be evaluated in terms of the NP spin coefficients as 

A& + 852 + (P - 7)62 + (CL - Y )ti = 0, 

D&+S*& - (a - .rr)t~ - (P - E ) &  = 0, 

where the components of d e  in the null basis are given by 

d t  = I A[ + n D t  + m8 * 6 + m * St.  

(A2.15) 

(A2.16) 

(A2.17) 
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